A Fuzzy Reinforcement Learning for a Ball Interception Problem

نویسندگان

  • Tomoharu Nakashima
  • Masayo Udo
  • Hisao Ishibuchi
چکیده

In this paper, we propose a reinforcement learning method called a fuzzy Q-learning where an agent determines its action based on the inference result by a fuzzy rule-based system. We apply the proposed method to a soccer agent that intercepts a passed ball by another agent. In the proposed method, the state space is represented by internal information the learning agent maintains such as the relative velocity and the relative position of the ball to the learning agent. We divide the state space into several fuzzy subspaces. A fuzzy if-then rule in the proposed method represents a fuzzy subspace in the state space. The consequent part of the fuzzy if-then rules is a motion vector that suggests the moving direction and velocity of the learning agent. A reward is given to the learning agent if the distance between the ball and the agent becomes smaller or if the agent catches up with the ball. It is expected that the learning agent finally obtains the efficient positioning skill.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ball Dribbling for Humanoid Biped Robots: A Reinforcement Learning and Fuzzy Control Approach

In the context of the humanoid robotics soccer, ball dribbling is a complex and challenging behavior that requires a proper interaction of the robot with the ball and the floor. We propose a methodology for modeling this behavior by splitting it in two sub problems: alignment and ball pushing. Alignment is achieved using a fuzzy controller in conjunction with an automatic foot selector. Ball-pu...

متن کامل

Qualitative Velocity and Ball Interception

In many approaches for qualitative spatial reasoning, navigation of an agent in a more or less static environment is considered (e.g. in the double-cross calculus [13]). However, in general, the environment is dynamic, which means that both the agent itself and also other objects and agents in the environment may move. Thus, in order to perform spatial reasoning, not only (qualitative) distance...

متن کامل

An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic

This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...

متن کامل

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

ART-Based Neuro-fuzzy Modelling Applied to Reinforcement Learning

The mountain car problem is a well-known task, often used for testing reinforcement learning algorithms. It is a problem with real valued state variables, which means that some kind of function approximation is required. In this paper, three reinforcement learning architectures are compared on the mountain car problem. Comparison results are presented, indicating the potentials of the actor-onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003